在线咨询

点击开始 在线咨询

学习规划

点击预约 学习规划
TOP
申请学习规划
预约报名

学而思1对1资讯站

资讯

深圳

课程咨询: 4000-121-121

当前位置:家教深圳站 > 高中辅导 > 正文

深圳高中数学必修四和角公式

2019-03-14 10:25:51  来源:网络
2015-2018年深圳高三二模试卷全套资源 免费下载>>

  倍角公式把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。倍角公式是三角函数中非常实用的一类公式,以下是小编给大家整理的深圳高中数学必修四和角公式,希望对大家有帮助!


深圳高中数学必修四和角公式

注:以上图片来源于网络,如有侵权,麻烦联系删除。


  深圳高中数学必修四和角公式


  ★诱导公式★ 常用的诱导公式有以下几组:   1.sinα^2 +cosα^2=1   2.sinα/cosα=tanα   3.tanα=1/cotα   公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)=sinα   cos(2kπ+α)=cosα   tan(2kπ+α)=tanα   cot(2kπ+α)=cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)=-sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   公式三:   任意角α与 -α的三角函数值之间的关系:   sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   公式五:   利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα   (以上k∈Z)   口诀:奇变偶不变,符号看象限


  同角三角函数的关系(即同角八式)


  平方关系:   sin^2(α)+cos^2(α)=1   tan^2(α)+1=sec^2(α)   cot^2(α)+1=csc^2(α)   ·积的关系:   sinα=tanα*cosα   cosα=cotα*sinα   tanα=sinα*secα   cotα=cosα*cscα   secα=tanα*cscα   cscα=secα*cotα   ·倒数关系:   tanα·cotα=1   sinα·cscα=1   cosα·secα=1   商数关系   sina/cosa=tana   cosa/sina=cota   直角三角形ABC中,   角A的正弦值就等于角A的对边比斜边,   sina=y/r   余弦等于角A的邻边比斜边   cosa=x/r   正切等于对边比邻边,   tana=y/x   三角函数恒等变形公式   ·两角和与差的三角函数:   cos(α+β)=cosα·cosβ-sinα·sinβ   cos(α-β)=cosα·cosβ+sinα·sinβ   sin(α±β)=sinα·cosβ±cosα·sinβ   tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)   ·辅助角公式:   Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中   sint=B/(A^2+B^2)^(1/2)   cost=A/(A^2+B^2)^(1/2)   ·倍角公式:   sin(2α)=2sinα·cosα=2/(tanα+cotα)   cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)   tan(2α)=2tanα/[1-tan^2(α)]   ·三倍角公式:   sin(3α)=3sinα-4sin^3(α)   cos(3α)=4cos^3(α)-3cosα   ·半角公式:   sin(α/2)=±√((1-cosα)/2)   cos(α/2)=±√((1+cosα)/2)   tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα   ·降幂公式   sin^2(α)=(1-cos(2α))/2=versin(2α)/2   cos^2(α)=(1+cos(2α))/2=vercos(2α)/2   tan^2(α)=(1-cos(2α))/(1+cos(2α))   · 万能公式:   sinα=2tan(α/2)/[1+tan^2(α/2)]   cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]   tanα=2tan(α/2)/[1-tan^2(α/2)]   ·积化和差公式:   sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]   cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]   cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]   sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]   ·和差化积公式:   sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]   sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]   cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]   cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]   ·其他:   sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0   cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及   sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2   tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

请加入QQ群,试题资料免费放送!
请加入QQ群,试题资料免费放送!
  • 深圳小学交流群:254317299
  • 深圳初中交流群:90482695
  • 高一年级交流群:293049985
  • 高中交流群:175743089
  • 高二年级交流群:148082199
  • 2021高考交流群:644059693
  • 意见反馈电话:010-52926893  邮箱:advice@xueersi.com
    保存 | 打印 | 关闭
    相关新闻